683 research outputs found

    Thermodynamic entropy of organic oxidation in the water environment: experimental evaluation compared to semi-empirical calculation

    Full text link
    © 2016, Springer-Verlag Berlin Heidelberg. Residual organic matters in the secondary effluent are usually less biodegradable in terms of the total organic carbon content, and when discharged into a receiving water body, their further decomposition most likely mainly occurs due to chemical oxidation. Using this scenario, a semi-empirical method was previously developed to calculate the thermodynamic entropy of organic oxidation to quantitatively evaluate the impact of organic discharge on the water environment. In this study, the relationship between the entropy increase (ΔSC) and excess organic mass (ΔTOC) was experimentally verified via combustion heat measurement using typical organic chemicals and mixtures. For individual organic chemicals, a linear relationship was detected between ΔSC and ΔTOC with the same proportionality coefficient, 54.0 kJ/g, determined in the previous semi-empirical relationship. For the organic mixtures, a linear relationship was also identified; however, the proportionality coefficient was 69.2 kJ/g, indicating an approximately 28 % increase in the oxidation heat required to decompose the same organic mass. This increase in energy can likely be attributed to the synergistic effects of hydrogen bonding, hydrophobic interactions, π–π interactions, and van der Waals interactions between functional groups of different organic compounds. Intermolecular interactions may result in 17–32 % more dissociation energy for organic mixtures compared to the organic components’ chemical structures. Because organics discharged into a water body are always a mixture of organic compounds, the proportionality coefficient obtained using organic mixtures should be adopted to modify the previously proposed semi-empirical equation

    New thermodynamic entropy calculation based approach towards quantifying the impact of eutrophication on water environment

    Full text link
    © 2017 Although the eutrophication phenomenon has been studied for a long time, there are still no quantifiable parameters available for a comprehensive assessment of its impacts on the water environment. As contamination alters the thermodynamic equilibrium of a water system to a state of imbalance, a novel method was proposed, in this study, for its quantitative evaluation. Based on thermodynamic analyses of the algal growth process, the proposed method targeted, both theoretically and experimentally, the typical algae species encountered in the water environment. By calculating the molar enthalpy of algae biomass production, the heat energy dissipated in the photosynthetic process was firstly evaluated. The associated entropy production (ΔS) in the aquatic system could be then obtained. For six algae strains of distinct molecular formulae, the heat energy consumed for the production of a unit algal biomass was found to proportionate to the mass of nitrogen (N) or phosphorus (P) uptake through photosynthesis. A proportionality relationship between ΔS and the algal biomass with a coefficient circa 44 kJ/g was obtained. By the principle of energy conservation, the heat energy consumed in the process of algae biomass production is stored in the algal biomass. Furthermore, by measuring the heat of combustion of mature algae of Microcystis flos-aquae, Anabaena flos-aquae, and Chlorella vulgaris, the proportionality relationships between the heat energy and the N and P contents were validated experimentally at 90% and 85% confidence levels, respectively. As the discharge of excess N and P from domestic wastewater treatment plants is usually the main cause of eutrophication, the proposed impact assessment approach estimates that for a receiving water body, the ΔS due to a unit mass of N and P discharge is 268.9 kJ/K and 1870.1 kJ/K, respectively. Consequently, P discharge control would be more important for environmental water protection

    A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment

    Get PDF
    Micropollutants are emerging as a new challenge to the scientific community. This review provides a summary of the recent occurrence of micropollutants in the aquatic environment including sewage, surface water, groundwater and drinking water. The discharge of treated effluent from WWTPs is a major pathway for the introduction of micropollutants to surface water. WWTPs act as primary barriers against the spread of micropollutants. WWTP removal efficiency of the selected micropollutants in 14 countries/regions depicts compound-specific variation in removal, ranging from 12.5 to 100%. Advanced treatment processes, such as activated carbon adsorption, advanced oxidation processes, nanofiltration, reverse osmosis, and membrane bioreactors can achieve higher and more consistent micropollutant removal. However, regardless of what technology is employed, the removal of micropollutants depends on physico-chemical properties of micropollutants and treatment conditions. The evaluation of micropollutant removal from municipal wastewater should cover a series of aspects from sources to end uses. After the release of micropollutants, a better understanding and modeling of their fate in surface water is essential for effectively predicting their impacts on the receiving environment. © 2013 Elsevier B.V

    Day-ahead allocation of operation reserve in composite power systems with large-scale centralized wind farms

    Get PDF
    This paper focuses on the day-ahead allocation of operation reserve considering wind power prediction error and network transmission constraints in a composite power system. A two-level model that solves the allocation problem is presented. The upper model allocates operation reserve among subsystems from the economic point of view. In the upper model, transmission constraints of tielines are formulated to represent limited reserve support from the neighboring system due to wind power fluctuation. The lower model evaluates the system on the reserve schedule from the reliability point of view. In the lower model, the reliability evaluation of composite power system is performed by using Monte Carlo simulation in a multi-area system. Wind power prediction errors and tieline constraints are incorporated. The reserve requirements in the upper model are iteratively adjusted by the resulting reliability indices from the lower model. Thus, the reserve allocation is gradually optimized until the system achieves the balance between reliability and economy. A modified two-area reliability test system (RTS) is analyzed to demonstrate the validity of the method.This work was supported by National Natural Science Foundation of China (No. 51277141) and National High Technology Research and Development Program of China (863 Program) (No. 2011AA05A103)

    Apparent non-canonical trans-splicing is generated by reverse transcriptase in vitro

    Get PDF
    Trans-splicing, the in vivo joining of two RNA molecules, is well characterized in several groups of simple organisms but was long thought absent from fungi, plants and mammals. However, recent bioinformatic analyses of expressed sequence tag (EST) databases suggested widespread trans-splicing in mammals^1-2^. Splicing, including the characterised trans-splicing systems, involves conserved sequences at the splice junctions. Our analysis of a yeast non-coding RNA revealed that around 30% of the products of reverse transcription lacked an internal region of 117 nt, suggesting that the RNA was spliced. The junction sequences lacked canonical splice-sites but were flanked by direct repeats, and further analyses indicated that the apparent splicing actually arose because reverse transcriptase can switch templates during transcription^3^. Many newly identified, apparently trans-spliced, RNAs lacked canonical splice sites but were flanked by short regions of homology, leading us to question their authenticity. Here we report that all reported categories of non-canonical splicing could be replicated using an in vitro reverse transcription system with highly purified RNA substrates. We observed the reproducible occurrence of ostensible trans-splicing, exon shuffling and sense-antisense fusions. The latter generate apparent antisense non-coding RNAs, which are also reported to be abundant in humans^4^. Different reverse transcriptases can generate different products of template switching, providing a simple diagnostic. Many reported examples of splicing in the absence of canonical splicing signals may be artefacts of cDNA preparation

    Micro-manufacturing : research, technology outcomes and development issues

    Get PDF
    Besides continuing effort in developing MEMS-based manufacturing techniques, latest effort in Micro-manufacturing is also in Non-MEMS-based manufacturing. Research and technological development (RTD) in this field is encouraged by the increased demand on micro-components as well as promised development in the scaling down of the traditional macro-manufacturing processes for micro-length-scale manufacturing. This paper highlights some EU funded research activities in micro/nano-manufacturing, and gives examples of the latest development in micro-manufacturing methods/techniques, process chains, hybrid-processes, manufacturing equipment and supporting technologies/device, etc., which is followed by a summary of the achievements of the EU MASMICRO project. Finally, concluding remarks are given, which raise several issues concerning further development in micro-manufacturing

    J Acquir Immune Defic Syndr

    Get PDF
    BackgroundCervical cancer is a major public health problem in resource-limited settings, particularly among HIV-infected women. Given the challenges of cytology-based approaches, the efficiency of new screening programs need to be assessed.SettingCommunity and hospital-based clinics in Gaborone, Botswana.ObjectiveTo determine the feasibility, and efficiency of the \u201cSee and Treat\u201d approach using Visual Inspection Acetic Acid (VIA) and Enhanced Digital Imaging (EDI) for cervical cancer prevention in HIV-infected women.MethodsA two-tier community-based cervical cancer prevention program was implemented. HIV-infected women were screened by nurses at the community using the VIA/EDI approach. Low-grade lesions were treated with cryotherapy on the same visit.ResultsFrom March 2009 through January 2011, 2,175 patients were screened for cervical cancer at our community-based clinic. 253 (11.6%) were found to have low-grade lesions and received same-day cryotherapy. 1,347 (61.9%) women were considered to have a normal examination and 575 (27.3%) were referred for further evaluation and treatment. Of the 1,347 women initially considered to have normal exams, 267 (19.8%) were recalled based on weekly quality control assessments. 210 (78.6%) of the 267 recalled women and 499 (86.8%) of the 575 referred women were seen at the referral clinic. Of these 709 women, 506 (71.4%) required additional treatment. Overall, 264 CIN stage 2 or 3 were identified and treated, and six micro-invasive cancers identified were referred for further management.ConclusionsOur \u201cSee and Treat\u201d cervical cancer prevention program using the VIA/EDI approach is a feasible, high-output and high-efficiency program, worthy of considering as an additional cervical cancer screening method in Botswana, especially for women with limited access to the current cytology-based screening services.20122014-01-08T00:00:00ZP30 AI045008/AI/NIAID NIH HHS/United StatesU2G PS001949/PS/NCHHSTP CDC HHS/United States1U2GPS001949/PHS HHS/United StatesIP30 AI 45008/AI/NIAID NIH HHS/United States22134146PMC388408

    Development of specific PCR assays for the detection of Cryptocaryon irritans

    Get PDF
    Cryptocaryon irritans is one of the most important protozoan pathogens of marine fish, causing the “white spot” disease and posing a significant problem to marine aquaculture. In the present study, a C. irritans-specific reverse primer (S15) was designed based on the published sequence of the second internal transcribed spacer (ITS-2) of ribosomal DNA (rDNA) of C. irritans and used together with the conserved forward primer P1 to develop a specific polymerase chain reaction (PCR) assay for direct, rapid, and specific detection of C. irritans. The specificity of these primers was tested with both closely and distantly related ciliates (Pseudokeroronpsis rubra, Pseudokeroronpsis carnae, Euplotes sp. 1, Ichthyophthirius multifiliis, Pseudourostyla cristata, and Paramecium caudaium), and only C. irritans was detected and no product was amplified from any other ciliates examined in this study using the specific primer set P1-S15. The specific PCR assay was able to detect as low as 45 pg of C. irritans DNA and a nested PCR assay using two primer sets (P1/NC2, P1/S15) increased the sensitivity, allowing the detection of a single C. irritans. The species-specific PCR assays should provide useful tools for the diagnosis, prevention, and molecular epidemiological investigations of C. irritans infection in marine fish
    • 

    corecore